Tetrahedron Letters 50 (2009) 4128–4131

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of novel oxygen heterocycles: 1,10-dioxa-cyclopenta[a]fluorene and benzo[b]naphtho[2, 1-d]furans via Dötz intramolecular benzannulation

Subhabrata Sen ^{a,}*, Parag Kulkarni ^b, Kailaskumar Borate ^b, Nandini R. Pai ^b

^a BASF-India Limited, Research and Development, 12 TTC Area, Thane Belapur Road, Mumbai 700005, Maharashtra, India ^b Department of Chemistry, D. G. Ruparel College, Matunga, Mumbai 400 016, Maharashtra, India

article info

Article history: Received 25 March 2009 Revised 27 April 2009 Accepted 28 April 2009 Available online 3 May 2009

ABSTRACT

Novel fused heterocycles 1,10-dioxa-cyclopenta[a]fluorene and benzo[b]naphtho[2, 1-d]furans were synthesized via Dötz intramolecular benzannulation of alkyne tethered aryloxy chromium Fischer carbenes. - 2009 Elsevier Ltd. All rights reserved.

Myriad fused nitrogen heterocycles have been synthesized from tethered alkynyl amino carbenes by intramolecular Dötz benzannulation.^{1a-e} For example, a variety of vinyl and aryl-2-alkynylcarbenes on thermolysis generate carbazoles and benzocarbazoles.^{2a-c} Woodgate et al. have synthesized diterpenoid indole derivatives via tethered chromium alkynylaminocarbenes.2d Several reactions have also been reported for o-analogous carbenes, Wulff et al. and Semmelhack et al. have synthesized cyclophanes, naphthoquinones, and furanocoumarins from intramolecular Dötz Benzannulation of alkyne tethered alkoxy carbenes. $3a-d$

Recently Giese et al. have reported applications of silyl-substituted alkyne tethered aryloxy fischer carbenes for the synthesis of rocaglamide skeleton via arrested intramolecular alkyne insertion.4a Nakata et al. have utilized intramolecular Dötz reaction to synthesize arnebinol.^{4b} In order to further demonstrate the utility of tethered aryloxy Fischer chromium carbenes toward novel oxygen heterocycles, we herein present their intramolecular benzannulation to yield heterocycles 1,10-dioxa-cyclopenta[a]fluorene 2a–e and benzo [b] naphtho [2,1-d] furans 2f–i. Compounds 2a–e can be considered as immediate precursors of substituted dibenzofurans (Scheme 1).^{[5](#page-3-0)} Importance of dibenzofurans is well known, as it is present in a variety of natural products. $6a-m$ This makes our oxygen fused heterocycles a very interesting target for synthesis.

Retrosynthetically we envisioned the formation of fused o-heterocycles via intramolecular benzannulation of fischer aryloxy carbenes 1a–i, under thermal heating. The fischer carbenes 1a–i can be synthesized by coupling of phenols 5a–e with acylated complex $7⁷$ $7⁷$ Syntheses of phenols $5a-e$ were accomplished by sonogashira coupling of o-iodophenol with substituted alkynes.

Scheme 1. Synthetic proposal for the conversion of benzofuro [7,6-b][1] benzofurans to dibenzofurans.

The facile cyclization process common to o-hydroxy acetylenic phenols⁸ thus formed was prevented by employing mild reaction conditions.^{[9](#page-3-0)}

Hence, o-iodophenols were protected followed by sonogashira coupling with corresponding alkynes and then deprotected to yield the desired o-hydroxy acetylenic phenols 5a–e ([Scheme](#page-1-0) [2](#page-1-0)). o-hydroxy acetylenic phenols 5a-e were then employed to synthesize the o-alkyne tethered aryloxy Fischer carbenes 1a-i. To synthesize the carbenes, we used Pulley's protocol, where the optimum procedure involves the formation of metal acyl complex 7a–c (synthesized by addition of acetyl bromide to ammonium ate complex $6a-c$), followed immediately by the addition of sodium salt of o-hydroxy acetylenic phenols 8a-e at $0^{\circ}C$.^{[7](#page-3-0)} Any efforts to perform the phenolate at room temperature (according to the original protocol) resulted in an intramolecular cyclization of the phenoxide 8a–e to generate benzofurans ([Scheme 2](#page-1-0)).

Complexes 1a–i are obtained as deep red oils by standard chromatographic techniques and are stable to storage $(-4 \degree C)$ under inert atmosphere for several weeks.¹¹ The yields of the carbenes ranged \sim 50–60% ([Table 1\)](#page-2-0). Efforts are in progress toward optimization of the yields via crystallization.

After the synthesis of aryloxy carbenes 1a-i, our final frontier was their intramolecular benzannulation to achieve the fused

^{*} Corresponding author. Present address: Jubilant Chemsys, C/O jubilant Organisys, Lab-3, D-12, Sector 59, Noida, Gautambudhnagar 201 301, Uttar Pradesh, India. Tel.: +91 120 436 3222; fax: +91 120 2580310.

E-mail address: subhabrata_sen@jchemsys.com (S. Sen).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.04.123

1f-**i** / **2f**-**i**: X= CH, n = 1, R = *p*-OMe, and *p*-Me, R2 = *n*-butyl, *n*-propyl, *n*-butyl and *n*-pentyl respectively

Scheme 2. Synthesis of aryloxy fischer chromium carbenes 1a–i and o-heterocycles by intramolecular Dötz benzannulation.

heterocycles. Subsequent thermolysis of 1a-i in THF generated the desired o-fused heterocycles in 65–70% yield as light yellow crystalline solids ([Table 2\)](#page-2-0). 11 11 11 The reactions were also tried under solvent-free conditions. Till date there have been no reports, to the best of our knowledge, about conducting intramolecular Dötz reaction under solvent free conditions. The yields under solvent-free conditions are 10–15% lower (45–40%) than under solvents viz. THF (65–70%). ([Table 2](#page-2-0)). The advantage in this procedure is drastic reduction of reaction time. For example, the reaction of carbene 1f gives the o-heterocycle 2f after 18 h at 60 \degree C in THF while solvent-free reaction goes to completion in 15 min at 80 \degree C. Optimizations are in progress to improve the yields. Also mandatory freeze-thaw degassing of the reaction mixture (an integral protocol of all Dötz reaction of Fischer carbenes to remove dissolved oxygen from the reaction mixture in order to prevent oxidation of the carbene) is not necessary with solvent-free conditions. We believe that this reaction follows a mech-anism similar to Dötz intermolecular benzannulation.^{[10](#page-3-0)} But we have not conducted any mechanistic investigation toward the formation of the product.

Hence a general and mild method of forming fused o-heterocycle is a valuable addition to the synthetic method available to the construction of substituted dibenzofurans.

The neutral reaction conditions are particularly attractive for synthesis of these heterocycles featuring sensitive functionalities. These preliminary results provide a fundamental basis to expand this methodology and demonstrate its utility in the ultimate synthesis of substituted dibenzofurans.

1

 $\overline{2}$

3

4

5

Table 1

Synthesis of carbenes

Table 2

Intramolecular Dötz benzannulation

Table 2 (continued)

Acknowledgments

We thank Dr. Amitabha Sirkar for his useful comments and suggestions. We gratefully acknowledge BASF-India limited for providing financial support to K.B. and P.K.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.04.123.

References and notes

- 1. (a) Dötz, K. H.; Harms, K.; Schäfer, T. O. Synthesis 1992, 1–2, 146; (b) Dötz, K. H.; Harms, K.; Schäfer, T. O. Angew. Chem., Int. Ed. Engl. 1990, 29, 176; (c) Rahm, A.; Wulff, W. D. J. Am. Chem. Soc. 1996, 118, 1807; (d) Camps, F.; Moreto, J. M.; Ricart, S.; Vinas, J. M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1470; (e) Woodgate, P.; Sutherland, H. J. Organomet. Chem. 2001, 629, 131.
- 2. (a) Grotjahn, D. B.; Dotz, K. H. Syn. Lett. 1991, 5, 381; (b) Leese, T.; Dötz, K. H. Chem. Ber. 1996, 129, 623; (c) Dötz, K. H.; Leese, T. Bull. Soc. Chim. Fr. 1997, 134, 503; (d) Woodgate, P. D.; Sutherland, H. S. J. Organomet. Chem. 2001, 629, 131.
- 3. (a) Semmelhack, M. F.; Bozell, J. J. Tetrahedron Lett. 1982, 23, 2931; (b) Semmelhack, M. F.; Bozell, J. J.; Keller, L.; Sato, T.; Spiess, E. J.; Wulff, W. D.; Zask, A. Tetrahedron 1985, 41, 5803; (c) Wulff, W. D.; McCallum, J. S.; Kunng, F.- A. J. Am. Chem. Soc. 1988, 110, 7419; (d) Wang, H.; Wulff, W. D. J. Am. Chem. Soc. 1998, 120, 10573.
- 4. (a) Giese, M. W.; Moser, W. H. Org. Lett. 2008, 10, 4215. and the references there in; (b) Watanabe, M.; Tanaka, K.; Saikawa, Y.; Nakata, M. Tetrahedron Lett. 2007, 48, 203.
- 5. Gupta, A.; Sen, S.; Harmata, M.; Pulley, S. R. J. Org. Chem. **2005**, 70, 7422.
6. (a) Tanahashi T.: Takenaka Y.: Nagakura N.: Hamada N. *Phytochemistry*
- 6. (a) Tanahashi, T.; Takenaka, Y.; Nagakura, N.; Hamada, N. Phytochemistry 2001, 58, 1129; (b) Huneck, S.; Elix, J. A.; Naidu, R.; Follman, G. Aust. J. Chem 1993, 46, 407; (c) Elix, J. A.; Venables, D. A.; Lumbsch, T.; Brako, L. Aust. J. Chem. 1994, 47, 1619; (d) Elix, J. A.; Venables, D. A.; Wedin, M. Aust. J. Chem. 1994, 47, 1335; (e) Shibata, S.; Ijtaka, Y. Chem. Pharm. Bull. 1984, 32, 366; (f) Sawada, T.; Aono, M.; Asahawa, S.; Ito, A.; Awano, K. J. Antibiot. 2000, 53, 959; (g) Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S. Eur. J. Org. Chem. 1998, 4, 661; (h) Gollapudi, S. R.; Telikepalli, H.; Jampani, H. B.; Mirhom, Y. W.; Drake, S. D.; Bhattiprolu, K. R.; Vander Velde, D.; Mitscher, L. A. J. Nat. Prod. 1994, 57, 934; (i) Yang, S.; Chan, M.; Patel, R.; Terracciano, J.; Loebenberg, D.; Patel, M.; Chu, M. J. Antibiot. 2004, 57, 465; (j) Morris, H. R.; Taylor, G. W.; Masento, M. S.; Jermyn, K. A.; Kay, R. R. Nature 1987, 328, 811; (k) Abe, H.; Vchiyama, M.; Tanaka, Y.; Saito, H. Tetrahedron Lett. 1976, 42, 3801; (l) Konjin, T. M.; Van de Meene, J. G. C.; Bonner, J. T.; Barkely, D. S. Biochemistry 1967, 58, 1152; (m) Wang, S.; Hall, J. E.; Tanious, F. A.; Wilson, W. D.; Patrick, D. A.; McCurdy, D. R.; Bender, B. C.; Tidwell, R. R. Eur. J. Med. Chem. 1999, 34, 215.
- Pulley, S. R.; Sen, S.; Vorogushin, A.; Swanson, E. Org. Lett. 1999, 1, 1721.
- 8. (a) Fkyerat, A.; Dubin, G. M.; Tabacchi, R. Helv. Chim. Acta 1999, 82, 1418; (b) Lütjens, H.; Scammells, P. J. Syn. Lett. 1999, 1079; (c) Defranq, E.; Zesiger, T.; Tabacchi, R. Helv. Chim. Acta 1993, 76, 425; (d) Pinault Frangin, M. Y.; Genet, J.-P.; Zamarlik, H. Synthesis 1990, 935.
- Nan, Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297.
- 10. Torrent, M.; Duran, M.; Solà, M. J. Am. Chem. Soc. 1999, 121, 1309.
- 11. Spectral data of few representative new compounds: Pentacarbonyl [(2-hex-1-ynyl phenoxy) (furyl) carbene] chromium (0) $(1a)$ ¹H NMR (300 MHz, CDCl₃) 7.88 (s 1H), 7.42–7.35 (m, 2H), 7.26–7.23 (m, 2H), 7.12–7.11 (m, 1H), 6.60 (s, 1H), 2.12 $(t, j = 6.60$ Hz 2H), 1.61–1.56 (m, 2H), 1.20–1.13 (m, 2H), 0.68 (t, $j = 6.90$ Hz 3H); ¹³C NMR (75 MHz, CDCl₃) 12.5, 18.0, 20.8, 29.3, 74.5, 96.1, 111.8, 112.3, 118.2, 121.7, 125.7, 127.7, 132.3, 150.1, 158.3, 164.1, 215.2, 223.8. Pentacarbonyl [(2-pent-1-ynyl phenoxy) (furyl) carbene] chromium (0) (1b) ¹H NMR (300 MHz, CDCl3) 7.88 (s, 1H), 7.42–7.34 (m, 2H), 7.27–7.23 (m, 2H), 7.12–7.11 (m, 1H), 6.60 (s, 1H); 2.09 (t, J = 6.99 Hz 2H), 1.30–1.18 (m, 2H), 0.73 $(t, J = 7.35$ Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) 11.2, 19.2, 19.6, 73.6, 94.9, 110.8, 111.2, 117.1, 120.6, 124.7, 126.7, 131.3, 149.0, 157.2, 163.1, 214.1, 222.7. Pentacarbonyl [(2-cyclohexylethynyl phenoxy) (furyl) carbene] chromium (0) (1c) ¹H NMR (300 MHz, CDCl₃) 7.96 (s, 1H), 7.50-7.41 (m, 2H), 7.35-7.28 (m, 2H) 6.94 (m, 1H), 6.66 (s, 1H), 2.73–2.61 (m, 1H), 1.84–1.70 (m, 2H), 1.45–1.35 (m, 4H), 1.32–1.09 (m, 4H); 13C NMR (75 MHz, CDCl3) 24.6, 24.9, 25.8, 29. 9, 32.1, 32.7, 74.5, 96.6, 112.9, 113.3, 114.3, 120.1, 128.8, 129.6, 131.5, 133.4, 151.1, 156.8, 165.5, 216.5, 222.2. 5-Butyl-1, 10-dioxa-cyclopenta [a] fluoren-4-ol: (2a) IR (KBr) v_{max} cm⁻¹: 3274 2955, 2855, 1664, 1466, 1346, 1040, 733; ¹H NMR (300 MHz, CDCl₃) 8.01 (d $J = 8.52$ Hz, 1H), 7.78 (d, $J = 9.48$ Hz, 2H), 7.50–7.36 (m, 2H), 6.98 (s, 1H), 4.94 (s, 1H), 3.20 (t, $J = 7.74$ Hz, 2H), 1.83-1.73 (m, 2H), 1.64-1.51 (m, 2H), 1.03 (t, $J = 7.26$ Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) 14.3, 23.2, 26.3, 32.2, 104.5, 112.0, 116.1, 118.2, 120.5, 121.8, 122.9, 125.1, 125.9, 136.2, 138.6, 141.6, 144.4, 156.4; HRMS calcd for C₁₈H₁₆O₃ 281.1178; found: 281.1172, mp 128-130 °C. 5-Propyl-1,10-dioxa-cyclopenta[a]fluoren-4-ol: (2b) IR (KBr) v_{max} cm⁻¹ : 3280 2960, 2840, 1634, 1458, 1374, 1035, 734; ¹H NMR (300 MHz, CDCl₃) 7.97-7.95 (d, J = 7.89 Hz, 1H), 7.66-7.63 (d, J = 10.06 Hz, 2H), 7.46-7.33 (m, 2H), 6.95 (s.
1H), 4.88 (s, 1H), 3.13 (t, J = 7.74 Hz, 2H), 1.86-1.72 (m, 2H), 1.12 (t, J = 7.35 Hz. 3H); ¹³C NMR(75 MHz, CDCl₃) 14.2, 22.8, 28.2, 104.5, 112.0, 115.9, 118.2, 120.6, 121.8, 122.9, 125.1, 125.9, 136.1, 138.6, 141.7, 144.4, 156.4; HRMS calcd for C₁₇H₁₄O₃ 267.1021; found: 267.1014, mp 136-138 °C;
	- 5-Cyclohexyl-1,10-dioxa-cyclopenta[a]fluoren-4-ol: (2c) IR (KBr) v_{max} cm⁻¹;
3413, 2929, 2853, 1664, 1450, 1339, 1020, 752; ¹H NMR (300 MHz, CDCl₃) 8.12 (d, J = 7.35 Hz, 1H), 7.66–7.64 (d, J = 7.62 Hz, 2H), 7.47–7.34 (m, 2H), 6.92 (s, 1H), 4.92 (s, 1H), 3.70–3.62 (m, 1H), 2.19–1.86 (m, 4H), 1.69–1.43 (m, 4H), 1.29–0.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) 25.9, 26.3, 26.9, 27.7, 31.4, 40.3 104.2, 112.1, 119.3, 120.6, 121.1, 122.1, 122.7, 125.4, 125.8, 136.1, 138.4, 142.8, 144.5, 156.5; HRMS calcd for $C_{20}H_{18}O_3$ 306.3544; found: 306.3520, mp 151– $154 °C$.